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A boundary-layer scale analysis is presented for steady, zonally symmetric flow in 
a Cartesian channel of rectangular cross-section, subject to uniform internal heating, 
and cooling at the lateral boundaries, using an approach based on that of Hignett, 
Ibbetson & Killworth for a related system. Six main flow regimes are identified, 
depending chiefly upon the magnitude of the parameter P defined as the square of 
the ratio of the (non-rotating) thermal-boundary-layer thickness scale to that of the 
Ekman layers adjacent to the horizontal boundaries. For P < Aid( $- 1, where A is 
the Rayleigh number and E the channel aspect ratio), the flow consists of an 
advectively dominated interior, characterized by a balance between vertical advection 
and internal heat generation, diffusively dominated thermal boundary layers adjacent 
to the sidewalls, and horizontal, viscously dominated Ekman layers (for non-zero 
rotation rate). If P < 1, the flow is only weakly modified by rotation, but as P 
increases through unity, rotation tends to inhibit heat transfer and thickens the 
thermal boundary layers. Provided P % E ~ v - ~ ,  (where v is the Prandtl number), the 
zonal flow is predominantly geostrophic, though not given by the conventional 
thermal-wind scale (based on the total thermal contrast AT') unless P $- 1. 

The results of the scale analysis are compared with laboratory measurements and 
numerical simulations of steady flow in a rotating, cylindrical annulus subject to 
(radially non-uniform) internal heating and sidewall cooling. Over the range of 
parameters accessible in the laboratory, the azimuthal velocity scale and thermal 
contrast were found to vary with rotation and heating rates in the way predicted 
from the scale analysis for the Cartesian system. Above a certain critical value of P 
(for the geometry used here Pcrit x i) ,  the baroclinic wave regime was found to occur, 
corresponding to where rotational constraints first begin to influence significantly the 
heat transfer of the axisymmetric flow. The numerical simulations are compared with 
the laboratory measurements, and used to extend the ranges of rotation rate and 
aspect ratio over which the scale analysis could be verified. Good agreement was found 
for the dependence of globally averaged flow parameters on P, and the dynamical 
characteristics of each regime were further verified using explicit calculations of the 
balance of terms in the basic equations from the numerical model. 

Further applications of the scaling technique to other, related systems are also 
discussed, together with a consideration of its generalization to systems of geophysical 
interest. 

1. Introduction 
Laboratory experiments on free thermal convection in a differentially heated 

rotating fluid annulus have, for many years, provided useful insight into studies of 
the circulations and flow instabilities in many systems of geophysical importance (e.g. 
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Hide 1953,1958,1969; Fultz et al. 1959; Fultz 1961 ; Hide & Mason 1975; Hart 1982). 
Most studies have concentrated upon the properties of baroclinic waves and eddies 
in a system heated and cooled at the side boundaries only, as representing the nearest 
analogue of the large-scale circulation and major energy-producing eddies in the 
terrestrial atmosphere and oceans. To establish the generality of conclusions derived 
from studies of such rotating baroclinic flows, however, i t  is desirable to investigate 
as many different configurations of basic temperature and motion fields and applied 
boundary conditions as possible. 

If the heating and cooling is restricted to the boundaries of the system, the range 
of possible flow configurations is severely limited to ones in which heat is exchanged 
between the sidewalls via conductive boundary layers, and with a monotonically 
varying thermal gradient in a (largely adiabatic) interior. Hide & Mason (1970), 
however, suggested the use of internal heat sources, as well as a t  the boundaries, in 
order to extend the range of possible flows, and presented results on the flow patterns 
and heat transport when a fluid annulus is heated internally and cooled at one or 
both sidewalls. The conclusions suggested that, despite many variations in the 
appearance of the flow pattern, many key properties of the annulus waves do not 
depend strongly upon the form of differential heating employed, even when the 
horizontal thermal gradient is not monotonic - a conclusion largely supported in 
subsequent studies (e.g. Ukaji 1979; Read 1985, 1 9 8 6 ~ ;  White 1986). 

A further motivation for studying the system cooled at both side boundaries has 
recently arisen from the suggestion (Hide 1980,1981 ; Read & Hide 1983, 1984; Read 
19863) that the regular baroclinic eddies in such a system, with its non-monotonic 
horizontal thermal gradient, may be dynamically similar to the major long-lived oval 
eddies in the atmosphere of Jupiter and Saturn (including Jupiter’s Great Red Spot 
and White Ovals). Detailed investigations of the dynamics of the corresponding 
laboratory system are particularly important in this context, in view of the profound 
implications of the latter suggestion for the stability of the atmospheric eddies, their 
role in the transport of heat, momentum and potential vorticity in the circulation 
of the atmospheres of the major planets, and the implied vertical and horizontal 
atmospheric structure (Read & Hide 1983, 1984; Read 1985, 1986a, b). 

In all studies of thermally driven flows subject to axisymmetric forcing and 
boundary conditions, it  is important to establish the dynamical characteristics and 
properties of the corresponding axisymmetric flow, since (a) an axially symmetric flow 
regime is actually observed in the laboratory (e.g. Hide 1969; Hide & Mason 1970, 
1975) ; (b) a dynamically consistent, zonally symmetric flow is a necessary prerequisite 
for linear instability calculations; and (c) a knowledge of the properties of the 
corresponding axisymmetric flow may enable a quantification of the role of non- 
axisymmetric eddies in the circulation. Numerous investigations of axisymmetric 
flows in the boundary-heated annulus have appeared in recent years, including 
laboratory measurements (Bowden & Eden 1965; Kaiser 1971 ; Hignett 1982), 
numerical simulations (Williams 1967 a, b) and various analytical studies (e.g. Hide 
1967a, b ;  McIntyre 1968). Axisymmetric flows in the internally heated system, 
however, have been much less thoroughly studied, with previous laboratory studies 
limited to those of Hide & Mason (1970) and Ukaji (1979), together with the numerical 
and analytical study of Quon (1977). Most theoretical treatments of any of these 
systems have tended to concentrate upon one or two particular limiting cases, usually 
in regions of parameter space characterized by highly geostrophic flow in the interior, 
with few attempts at greater generality. The work of Quon (1977) represents the most 
detailed attempt so far to describe the internally heated flows analytically. By using 
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straightforward scaling techniques, he obtained estimates of the temperature contrast 
and its dependence on heating rate which compared favourably with his numerical 
simulations, although his analysis was subject to some ad hoc assumptions. 

An approach which appears to offer the possibility of more general characterization 
of axisymmetric convection problems with rotation has recently been suggested by 
Hignett, Ibbetson & Killworth (1981, hereinafter referred to as HIK), in connection 
with their laboratory and analytical studies of rotating thermal convection driven 
by non-uniform heating along a horizontal surface. Their procedure involved a fully 
consistent scale analysis for the flow in the interior and major boundary layers, in 
which it  was found that, over an extremely wide range of conditions, the properties 
of the flow depended mainly upon a suitably defined parameter (proportional to 
rotation rate 52) measuring the ratio of the characteristic lengthscales of the two most 
significant boundary layers. By considering a contiguous sequence of limits for this 
parameter, all the main regimes of flow (defined in terms of the chief dynamical 
balances in the basic equations) obtainable in the system could be determined and 
located over the full range of rotation and imposed differential heating (subject to 
some minimal initial assumptions). 

The present paper describes a further application of this approach to the internally 
heated/sidewall-cooled annulus, using a suitably modified form of the boundary-layer 
parameter of HIK. The scale analysis and its predictions for the properties of the 
various axisymmetric flow regimes are derived in $2 for a suitably d e h e d  Cartesian 
system analogous to the laboratory experiment. The following two sections then 
describe attempts to test and verify this analysis over a wide range of parameter space 
under realistic conditions. A series of laboratory measurements of horizontal velocity 
and temperature in an internally heated rotating annulus are presented in $3, 
indicating the properties of those axisymmetric flow regimes attainable in the 
annulus. In  $4, these measurements are compared with, and extended by, numerical 
simulations of axisymmetric annulus flows subject to the same form of heating and 
boundary conditions, using a primitive-equation numerical model. By suppressing 
the development of non-axisymmetric instabilities, an axisymmetric flow could be 
sampled with the model over a wider range of parameter space than in the laboratory. 
More detailed diagnostics of the flow could also be obtained, thereby achieving a more 
rigorous test of the scale analysis, and also of the formulation and operation of the 
numerical model itself. The major conclusions are summarized and discussed in $ 5 ,  
with particular regard to further applications of the approach to other laboratory 
and geophysical systems. 

2. Scale analysis and derivation of flow regimes 
For simplicity, we choose to carry out the analysis for an incompressible Boussinesq 

liquid in Cartesian geometry. The results are then formally applicable to the flow in 
a rotating annulus of vanishingly small relative curvature, i.e. 2(b -a ) / (b+a)  4 1, 
where a and b are the inner and outer radii of the annulus). We define a Boussinesq 
liquid as a fluid in which density variations are negligible except in the buoyancy 
term, and the coefficients Y, K ,  and a (respectively of kinematic viscosity, thermal 
diffusivity and cubical expansion) may be regarded as constants. In ignoring 
curvature, we also take the centrifugal acceleration to be negligible compared with 
gravity (i.e. SZ2b/g4 1, where SZ is the rotation rate and g is the gravitational 
acceleration). These assumptions are quite realistic except perhaps at the most rapid 
rotation rates considered (see $4.6 below). 
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2.1. Basic equations and dimensionless parameters 
For incompressible two-dimensional flow (i.e. with no variation in the zonal direction 
y), it  is convenient to define a meridional stream function $, such that 

u = $,, w = -$ X ,  (2.1) 

where u and w are the lateral and vertical components of velocity, and the subscripts 
z and z denote partial differentiation in the lateral and vertical direction respectively. 
The steady, two-dimensional form of the Navier-Stokes and continuity equations can 
then be written as an equation for the specific zonal momentum 

vV2v = f$, + J ( v ,  $1, (2.2) 

(where f = 2Q and J ( c , d )  = C,d,-c,d,, (2.3) 

vV4$ = gaT,- fv,- J(+,  V 2 $ ) ,  (2.4) 

in the conventional Jacobian notation), and a zonal vorticity equation 

where T is the temperature and 
[ =  uz-w2 

= V 2 $  

is the zonal component of vorticity. The thermodynamic equation becomes 

(2.5) 

K V 2 T + q +  J(+, T )  = 0 ,  (2.6) 

where q represents the internal heating rate, obtained in the laboratory through ohmic 
dissipation produced by electrical heating (see $3 below and Hide and Mason 1970; 
Quon 1977). The boundary conditions to which the fluid is subject are 

y k = $ , = v = T , = O  on z = O , H ,  ( 2 . 7 ~ )  

$ = $, = v = T-T, = 0 on x = -$L, +$L, (2.7b) 

being an idealization of the laboratory configuration in which the fluid is contained 
by thermally insulating, rigid, non-slip endwalls a t  z = 0 and H ,  and isothermal 
(T = q), rigid, non-slip sidewalls at  x = -fL and $L. The problem may then be 
described in terms of five dimensionless parameters, viz. a Rayleigh number 

gaATL3 A=------- 
KV 

(where AT represents the magnitude of the maximum temperature difference set up 
by internal heating), an Ekman number 

v E = -  
f H 2 ’  

v 
the Prandtl number o - = -  (2.10) 

(2.11) 

K ’  

H 
L’ 

c = -  the meridional aspect ratio 

and a measure of the strength of the internal heating, defined here with respect to 
thermal conduction as 

(2.12) 
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From (2.6), p is seen to assume a significance for the internally heated system similar 
to the Nusselt number for the boundary-heated annulus, while p- 1 may be viewed 
as a measure of the Phclet number (see 992.2 and 3.2 below). 

In the following scale analysis, the intention is to derive the dominant dynamical 
balances applicable to the interior and main boundary layers, and to obtain the 
dependence of internal parameters, such as AT and appropriate measures of w and 
$, on the external conditions (rotation and heating rates, and geometrical constraints), 
over as wide a range as possible. Accordingly, we restrict the initial assumptions as 
follows : 

(i) the aspect ratio E is not significantly different from unity; 
(ii) there are single thickness scales, 1 for the side and h for the horizontal boundary 

(iii) outside the boundary layers there is a distinct interior flow characterized by 

(iv) u % 1. 
Note that (ii) does not exclude other lengthscales, different in magnitude to 1, which 

may be relevant to other passive boundary layers (i.e. which do not materially affect 
the most significant properties of the flow). 

2.2. The non-rotating problem 
To assist in the subsequent stages of the analysis, we first consider the problem 
without rotation, assuming the flow to consist of an advective interior and thin 
sidewall boundary layers (assumptions (ii) and (iii)). We non-dimensionalize (2.6) in 
the sidewall layer of thickness 1, using 

layers ; 

horizontal lengthscale L and vertical lengthscale H, implying that (1,h) Q (L,  H ) ;  

AX =  AX., AZ = HA%*, q = - 

T-T, = ATT,, $ = Y$,, 

where ( )* denotes dimensionless variables of magnitude O(1). Thus, 

(2.13) 

(2.14) 

KH Y=-. 
1 

(2.15) 

For this case, the non-dimensional form of the vorticity equation (2.4) becomes, using 
(2.15), 

(2.16) 

If u % 1 (assumption (iv)), we obtain a buoyancy/viscous balance in the sidewall 
boundary layer, implying that 

1 = E ~ A - ~ L  (= z T )  (2.17) 

(cf. Elder 1965; Gill 1966; McIntyre 1968 for the boundary-heated problem and Quon 
1977 for internal heating), which is 4 L provided that A % E.  From (2.15), therefore, 

Y = ~ 1 A f .  (2.18) 



260 P. L. Read 

Wenow rescale (2.6) for the interior, using (2.13) and (2.18), but with Ax = LAX, ; thus 

(2.19) 

where the terms in parentheses represent the cases 6 >< 1. Provided that ,u $ E - ~  and 
A % E-’ (for E < l ) ,  or /I $ 1 and A % B (for E > l ) ,  an internal heating/advection 
balance is found, implying that 

which is consistent with the assumption ,u12/L2 4 1 provided that A $ E. Hence, from 
(2.121. 

/A = O(s-fA:), (2.20) 

(2.21) 

which is essentially the same result as found by Quon (1977) for his ‘convective 
regime’. 

2.3. EfSeects of rotation 

We follow HIK and Hignett (1982) in noting that the thinnest horizontal boundary 
layer in a homogeneous rotating system is usually an Ekman layer of non-dimensional 
thickness O(6Ei) (e.g. Fein 1978) when E 4 1. We further anticipate that the ratio of 
the thicknesses of the sidewall thermal boundary layer (derived above) and the 
Ekman layer is of importance in describing the dynamics of the flow in the presence 
of rotation, and accordingly define a new dimensionless parameter 

(2.22) P = A-1 -1 -a  PE 8 2, 

being the square of the ratio of the non-rotating value of 1 to the Ekman layer 
thickness (cf. Hignett 1982). This parameter then has the convenient property of 
being a linear function of rotation rate IR, and accords a degree of physical insight 
into the meridional transport properties of the flow in a similar manner to the 
equivalent parameter Q discussed by HIK. If AT may be regarded as a measure of 
the vertical temperature contrast, it is also of interest to note that P - Eu-iL/(Rossby 
radius), where the Rossby radius is given by T H / f ,  fl being the mean buoyancy 
frequency ( =  [guAT/@). 

A possible disadvantage of this system of parameters, however, is that A and P 
both involve AT, and are therefore internal parameters, themselves determined by 
the flow. It is clearly desirable to define a set of external parameters which depend 
only upon those factors which would be under the control of an experimenter, namely 
the heating and rotation rates, q and 8, geometry and fluid properties. Accordingly, 
we may define a further two parameters associated with P and A,  thus, 

= A,u, 

(2.23) 

(2.24) 

which are, respectively, the values of A and P obtained for a temperature scale defined 
by ,u = 1, so that AT = qL2/K (i.e. the ‘conductive’ temperature scale of Quon 1977 
and below), and directly depend on the externally determined heating rate q. 
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A straightforward application of similar scaling analyses to those employed by HIK 
lead to the discrimination of six regimes for the system (although the number of 
definable regimes is somewhat arbitrary), the validity of which is found to depend 
mainly on the value of P, and only weakly on the other parameters. Each regime, 
as defined below, corresponds to a different balance dominating in the governing 
equations for the interior and/or the principal boundary layers. The corresponding 
limits on P thus represent the formation of the Ekman layer as the dominant 
horizontal boundary layer (at P x e 2 c 2 ,  see below), equal influence exerted by 
rotation and buoyancy at  P x 1 ,  and the disappearance of a distinct sidewall thermal 
boundary layer at P = A i d  (cf. the flow structure illustrated in figure 7 below). 
Following HIK for a fixed heating rate (and large A)  and assuming CT 9 1, therefore, 
these six regimes can be written as: 

(i) no rotation, P = 0; 
(ii) very weak rotation, P 4 e 2 c r 2  ; 
(iii) weak rotation, e 2 c 2  4 P 4 1 ; 
(iv) moderate rotation, P x 1 ; 
(v) strong rotation, 1 4 P 4 Aid; 
(vi) very strong rotation, P B Aid. ;  

and we briefly discuss their respective characteristics below. 
(i) The non-rotating case has already been dealt with in 52.2 above, in which it was 

found that the flow is divided into an advective/internally heated interior in the 
thermodynamic equation, with sidewall boundary layers of thickness 1, (see (2.17)), 
characterized by the usual advective/diffusive balance. From a consideration of the 
interior balances in the zonal vorticity equation, we may estimate the magnitude of 
the isotherm slope (/3 = AT,/AT, where AT, is the horizontal temperature contrast 
across the interior). Provided c is sufficiently large, a buoyancy/viscous balance 
operates, so that gaT,( = O[gaATflL-']) x vV411/( = O[U!PL-~]). Thus, f l  5 O(efA-f)  < 1. 

The internal heating parameter p is given by 

(2.25) p = O(Age 6 )  9 1, 

in the external system (cf. (2.20)), and the value of ATimplied (see (2.21)) is effectively 
an estimate of the vertical temperature contrast, and hence of the mean static 
stability in the interior. The advective term in (2.6) is then dominated by the 
contribution from w 3, suggesting that motion in the interior is predominantly 
vertical and upwards for q and T, > 0 except near the top and bottom boundaries. 
In the absence of rotation, (2.2) for v is decoupled from the other two basic equations, 
and motion occurs only in the meridional plane. 

(ii) Increasing P from zero (but to less than e2cr2 )  takes the system first into the 
very-weak-rotation regime. Sincefis no longer zero, (2.2) is then coupled to (2.4) and 
the associated Coriolis torques render v non-zero. Because f is still very small in this 
regime, the scaling in the thermodynamic and vorticity equations remains as for (i), 
with the corresponding meridional transport properties, sidewall-boundary-layer 
thickness and scales for Y and p unaffected by rotation. The latter presupposes, of 
course, that the sidewall thermal boundary layer is much thinner than any other 
boundary-layer scale (notably that of the Stewartson type, whose thickness I ,  is 
O(f€iH) in the present scheme, e.g. see Fein 1978). It is straightforward to show from 
the definition of I ,  in (2.17) that this requires P 4 A f d  for regime (ii), which is readily 
satisfied for e 2 c r 2  4 1. To obtain an estimate for the zonal velocity scale V ,  we may 
scale (2.2) in the Ekman layer (assuming E is sufficiently small, though see 84.6 below) 
using 

AZ = HE~Az,, Av = VAV, (2.26) 

1 -1 
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and (2.18) to obtain 
f L  as-'@V: v* = - (@*)* + J ( @ * ,  v*). 

V 
(2.27) 

The significance of the upper limit on P is now apparent since, for P < E ~ U - ~ ,  (2.27) 
is characterized by an advective/Coriolis balance in the Ekman layer. Outside the 
sidewall boundary layers (where an advective/viscous balance must operate in (2.2)), 
the entire flow is then characterized by local conservation of angular momentum (cf. 
the discussion of Read 1986c) with V = O ( f L )  (i.e. proportional to P). The scaling 
in the interior vorticity equation is therefore unchanged from (i) ,  and the isotherm 
slope p remains O ( d  4 )  4 1. 

(iii) As P increases beyond ~ ~ c r - ~ ,  the viscous term in (2.27) becomes the dominant 
term in the Ekman layer balancing the Coriolis term, thus rescaling V to 
o(~L- lAn?~ i@) .  This balance also extends into the interior, while in the sidewall 
boundary layers, the viscous/advective balance in the zonal momentum equation 
remains unchanged from (i). Despite the new scaling for V ,  the dominant balances 
in the thermodynamic equation remain unchanged (provided that 1, remains 4 l , ,  
and hence P < A$&; see above), and the meridional heat transfer, y and Y are still 
unaffected by rotation. The rescaling of V does affect the interior balance in the 
azimuthal vorticity equation, however, from a buoyancy/viscous to  a buoyancy/ 
Coriolis balance characteristic of geostrophic flow, even though V is not given by the 
usual 'thermal-wind' scale (cf. McIntyre 1968). The reason for this is that the 
isotherm slope in the interior now depends strongly on rotation (/I = O(e-l@)) in this 
regime (though i t  is still < l ) ,  more than outweighing the P-' dependence of the 
'thermal wind' which would hold for constant /3. The geostrophic character of the 
interior zonal flow may be further confirmed by forming the zonal Rossby number, 
defined as 

5 3  

T l  

(2.28) 

which, for this regime, is O(~cr-'P-n?) and therefore much less than unity. 
(iv) I n  the intermediate regime, the Ekman-layer thickness becomes comparable 

with that of the sidewall boundary layer, and is therefore expected to  begin to exert 
an influence upon the meridional circulation and the associated heat transfer. 
Anticipating that the zonal velocity scale for P B 1 is the 'thermal-wind' scale (i.e. 
proportional to P-l,  see below), we identify the region P = O(1) as the regime where 
aV/aP x 0, so that V reaches its maximum value V, = O ( K L - ~ A @ )  extrapolated from 
regime (iii). Given that the Ekman layer now exercises the dominant influence 
upon the meridional circulation, we now assume that Y is rescaled to  
O( &HE;) = O(KE$A~:P-:). The latter scalings imply a slow broadening of the sidewall 
thermal boundary layer with P to 1; = O(Z, @) (where 1, is given by (2.17)), obtained 
by seeking an advective/diffusive balance for the thermodynamic equation in a 
sidewall boundary layer scaled on 1;. (cf. the discussion of 52.2). These scalings for 
V and Y also imply a weak rotational influence on the efficiency of heat transfer. 
Provided 1;. < 1, (now requiring P < Ah& 9 l ) ,  the thermal layer remains the 
dominant sidewall boundary layer, and y is then modified to O(Ak-:P-i), i.e. a slow 
decay with increasing rotation. The interior balance in the vorticity equation must 
remain geostrophic, but the isotherm slope /I (still O(e-l@)) is now of order unity 
so that ATh begins to approach AT itself. 

(v) As P is increased well beyond P = 1 ,  the Ekman layer becomes much thinner 
than the sidewall thermal boundary layer and effectively dominates the meridional 
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FIQURE 1. Schematic diagram showing the dependence of derived parameters on internal parameters 
in the various axisymmetric flow regimes defined in terms of P (assuming, for simplicity, that E = 1) .  
Quantities represented are scaled as VL/ (KA+)  (-); !P/(di) and p /A i  (----); /? = AT,/AT 
(-.-.-. ); Z/L ( .  . . . . . ); and R = V/(/(fL) ( -  + - + - ). 

circulation, so that Y must remain O( VHEi) .  As a result of the new scaling for Y,  
and the requirement for a geostrophic balance in the interior vorticity equation, the 
interior horizontal thermal contrast becomes static at /3 = O(1) (i.e. AT, w AT), and 
V is resealed to the familiar ‘thermal-wind’ scale V = O(KA:L-%~P-~).  The 
(diffusive/advective) sidewall thermal boundary layer can accommodate these 
changes by expanding its thickness t o  1; = A - k - f H L ,  thus extending the influence 
of thermal diffusion further into the interior. Provided that 1; remains 6 L ,  however, 
an internal-heating/advection balance in the thermodynamic equation can continue 
to operate in the interior and p is resealed to O(AkfP-i) ,  which is still %- 1 (cf. the 
‘high-P&let-number regime’ of Hide 1967a, b and Hide & Mason 1975 for the 
boundary-heated annulus). Note that, since the Ekman layer now controls the 
meridional circulation, 1; can exceed I ,  without affecting the overall transport 
properties of the flow. 

(iv) At the most-rapid rotation rates, the expansion of the diffusive sidewall 
boundary layers extends their influence throughout the domain. The limit on P that  
discriminates between regimes (v) and (vi) may be seen, therefore, as expressing the 
requirement that  1; = L, which yields P = Aid’. No separate advective interior for 
the thermodynamic equation exists in regime (vi), and p is therefore O(1) (although 
strictly (p - 1) = O(AkfP-g) as before), implying that 

AT = O ( 5 ) .  (2.29) 

The internal and external parameters are therefore equivalent in this regime, so that 
V is now given by the ‘thermal-wind’ scale in both systems of parameters. I n  this 
conductively dominated regime, the temperature field reduces to the solution of a 
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Regime V Y lu B 1 R 
(i) Non-rotating 0 ~ d A f  (A/€)$ (€/A)$ ( e / A ) f L  1*  

(ii)  Very weak f L  K ~ W  (A/€)$ (s/A)S ( e / A ) f L  1 

(iii) Weak rotation K L - ’ ( A ~ P ) ~  ~ d A i  (A/e)f C ’ P ~  (e/A)f L eu-1Pf 

(iv) Moderate rotation ~L-l (Ae) i  ~etAfP- i  (A/€)+ P i  c ’ P ~  ( e / A ) f @ L  ecr-IP-1 

(v) Strong rotation ~ L - l ( A e ~ 9 P - l  ~etA4tp-E d&P? 1 e-fAfBP(L eau-?P-z 

(vi) Very strong ~ L - l ( A e ~ ) i P - l  ~etA4Otp-t 1 1 L eau-ip-a 

* lima+O. 

(P = 0 )  

rotation (P  6 E ~ U - ~ )  

($a-2 6 P 4 1 )  

(P z 1) 

(1  6 P 6 A i d )  

rotation (P  % A@) 

TABLE 1.  Dependence of flow quantities on internal parameters for each regime 

Poisson equation obtained by linearizing (2.6), so that the isotherms become steadily 
more vertical as P continues to  increase (cf. the ‘low-Phclet-number regime’ of Hide 
1 9 6 7 ~ ’  b and the ‘conductive regime’ of Quon 1977). 

The results of the above analysis, in terms of the dependence of p,  Y ,  1’8, V and 
R on P,  are summarized schematically in figure 1 and table 1. 

2.4. Comparison with the analysis of Quon (1977) 
Various aspects of the analysis given above have many features in common with the 
more restricted treatment of Quon (1977), and indicate some inconsistencies in the 
assumptions invoked in the latter work. Quon’s analysis applies to  a similar Cartesian 
system to that analysed above (but only for e = l ) ,  and discusses a ‘conductive 
regime’, which is essentially the same as our regime (vi). The heat transfer is then 
dominated by diffusion throughout the flow, implying a temperature scale given by 
(2.29) as above, and a geostrophic zonal flow in the interior characterized by the 
‘thermal-wind ’ scale. 

His alternative limit (the ‘ convective regime ’), however, contains features which 
the present work shows to  be mutually incompatible. Quon’s analysis of the heat 
transfer in this regime effectively parallels that given above for regimes (i)-(iii), in 
which he derives an internal-heating/vertical advective balance in the interior 
thermodynamic equation, and diffusively dominated sidewall boundary layers of 
thickness I = O(A-:L) (cf. (2.17)), with an  implied temperature scale as given by 
(2.21). He goes on to conclude from his initial assumptions that v is geostrophic in 
the interior (with the thermal-wind balance in the interior vorticity equation, as in 
our regime (iii)), but then incorrectly assumes that V is given by the usual 
‘thermal-wind’ scale. As discussed above for regime (iii), this scaling for V cannot 
be compatible with Quon’s ‘convective scale’ (2.21), since the latter also implies a 
strong dependence of the interior isotherm slope on SZ which combines to give a scale 
for v proportional to 0:. 

The present analysis allows for these interdependent effects in a more self-consistent 
way, thus avoiding the pitfalls of Quon’s less general approach, and permits us to 
examine the full range of parameters within the limitations posed by the initial 
assumptions listed in $$Z.l and 2.2. Thus, we see that, if V is given by the 
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Inner radius, a (cm) 
Outer radius, b (cm) 

Annulus depth, d (cm) 

Rotation rate, 0 (8-l) 

Power input, p ,  (W) 
Coefficient of cubical expansion, a (K-l) 
Kinematic viscosity, v ( cmz s - ~ )  
Thermal diffusivity, K (om2 s - ~ )  
Mean density, po (gm ~ m - ~ )  
Prandtl number, c 
Conductive Rayleigh number, A, 

Labor at o ry Numerical 
experiments simulations 

4.10 4.0 
10.2 

16.05 
( E  = 2.63) 

0-350 100 

1.62 f0.02 x 

1.044 f O . 0 0 1  1.043 
12.4f0.3 9.16 

16.0 ( E  = 2.67) 
6.0 ( E  = 1)  
2.5 ( E  = 0.325) 

0.01-1.0 10-4-12.0 

2.90+0.02 x 10-4 3.15 x 10-4 

1.31 f0.01 x 10-3 1.31 x 10-3 

4.3 x 108-3.0 x 10' 9.08 x 107 

1.20 x 10-2 

TABLE 2. Experimental parameters for laboratory experiments and numerical simulations 

' thermal-wind ' scale and the interior remains advectively dominated, we must be in 
regime (v). The thermal boundary layer thickness 1 must therefore be greater than 
O ( A f L )  (possibly implying an element of ' boundary-layer entrainment ' as discussed 
by Quon 1977, though see below), and the temperature scale A T  becomes the 
rotationally dominated ' convective ' scale 

(2.30) 

which lies between the ' convective ' and ' conductive ' scales discussed by Quon (1977) 
and above for regimes (i) and (vi). In connection with the passive role for the 
Stewartson Ei sidewall boundary layers, assumed above, it is of interest to note that 
Quon's parameter h, used to measure the degree of ' boundary-layer entrainment ' at 
the sidewalls, is defined in the present system as h = PA-:. It therefore measures the 
ratio (ZT/Zs)3 (for E = l ) ,  and is < 1 for most cases of practical interest. 

3. Laboratory verification 
In the previous section a self-consistent scale analysis has been described for 

axisymmetric, steady thermal convection in any rotating fluid system which is heated 
internally and cooled at  the lateral boundaries (or, in principle, vice versa with 
internal cooling and sidewall heating, e.g. see Read 6 Hide 1983). The most 
satisfactory way of verifying such an analysis is clearly to perform a series of carefully 
controlled experiments in the laboratory on a real fluid system to which the analysis 
may be expected to apply, taking appropriate measurements for comparison with the 
analysis. The following sub-sections discuss a series of such experiments in an 
internally heated, rotating, cylindrical annulus. 

3.1. Experimental conftguration 
The experimental arrangement was similar in many respects to that used by Hide 
& Mason (1970) and Ukaji (1979), and the dimensions and other salient details of the 
apparatus are summarized in table 2 and illustrated in figures 2 and 3. The working 
fluid was contained in a cylindrical annulus of conventional design, with vertical, 
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FIGURE 2. Schematic cross-section of the cylindrical annulus used for measurements of horizontal 
velocity and temperature in flows driven by internal heating. The convection chamber is viewed 
from above, and illuminated by narrow, horizontal beams of light at z = 0.2d and z = 0.7d. 

coaxial, thermally conducting (brass) sidewalls of thickness 5 mm at T = a and 2.5 mm 
at T = b, and horizontal endwalls which were nominally thermally insulating (Perspex) 
at z = 0 and d. Unlike Hide & Mason (1970) and Ukaji (1979), however, the upper 
surface of the fluid was in contact with the rigid lid of the apparatus for all the 
experiments described herein. 

rad) and centred on a turntable, driven 
by a servo-controlled, permanent-magnet d.c. motor. Long-term stability of the 
rotation rate (over periods of several hours, comparable with the duration of a typical 
run) was found to lie within one part in lo3 between 0.1-1 rad s-l. Short-term 
stability (over a small number of rotation periods) varied between one part in lo4 
at 1 rad s-l and one part in lo3 at 0.1 rad s-l. The rotation rate could be conveniently 
varied between 

The inside surface of the inner sidewall and the outside surface of the outer sidewall 
were both in contact with water baths, through which wafer at a carefully controlled 
temperature could be circulated a t  flow rates up to 8 1 min-'. To minimize vertical 
and azimuthal thermal gradients along each sidewall, the coolant water was injected 
into the water bath near the top of the convection chamber in an azimuthally swirling 

The annulus was levelled (to within 

and 5 rad s-l. 
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FIQURE 3. Schematic cross-section of the cylindrical annulus, indicating the positions of 
thermocouples 1-10 in a meridional slice. 

flow (outer sidewall only), and withdrawn near the base of the apparatus. By this 
means, the wall temperatures were maintained constant to within 0.01 K, and with 
vertical gradients along the sidewalls limited to < 0.05 AT,,,/d at the inner wall and 
< 0.11 AT,,,/d at the outer wall. 

The working fluid was heated in the same way as by Hide & Mason (1970), by 
passing an alternating electric current through the fluid (which was a weak electrolyte) 
using the two sidewalls themselves as electrodes (see figure 2). The magnitude of the 
heating rate could then be determined from measurements of the r.m.9. voltage 
applied to the sidewalls (typically up to 300 V) and the current passing through the 
fluid, and could be varied over the approximate range 0-350 W. The choice of working 
fluid was then partly dictated by the need to use a weak electrolyte, and also by the 
flow-visualization technique employed (see below). The fluid used was a mixture of 
glycerol and water (approximately 15 % glycerol by volume), rendered weakly 
electrically conducting by the addition of a small quantity of an inorganic salt 
(usually CuNO,). As discussed by Hide & Mason (1970) and Quon (1977), if the 
temperature variation of fluid properties is ignored, this form of electrical heating 
generates an internal (ohmic) heat source whose spatial form is 

q/Ks-' = Po 
2% In @ / a )  dpo c p  rz ' 
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where p ,  is the electrical power input (in Watts), po the mean density and c p  the 
specific heat capacity of the fluid. In  the absence of advective heat transfer, the 
resulting conductive temperature field is characterized by vertical isotherms, and a 
local maximum in temperature a t  the geometric mean radius (ab);, and equal 
partitioning of the heat flux removed at  both sidewalls (i.e. precisely half the heat 
generated internally is withdrawn at  each sidewall) if T, = q. 

Temperatures were measured using an array of copper-constantan thermocouples 
(sensitivity x 40 pV K-l), distributed in an azimuthal slice as shown in figure 3. 
Three thermocouples were sealed with epoxy resin into small holes in each sidewall 
in order to determine the thermal boundary condition acting on the fluid. The 
temperature distribution in the fluid itself was sampled by four more thermocouples 
in short, electrically insulated rigid probes, extending 1.2 cm into the convection 
chamber from the base and lid. All ten thermocouples were referenced to a further 
thermocouple maintained at 0 "C, and their voltages measured using d.c. amplifiers 
and a digital voltmeter, with an effective resolution of 1 pV. 

Flow visualization was obtained using a suspension of polystyrene beads of 
diameter 600 pm, which were rendered nominally neutrally buoyant by adjusting the 
density of the working fluid (by altering the proportion of glycerol) until most of the 
beads were uniformly dispersed throughout the fluid at the anticipated mean 
operating temperature (cf. Hignett et al. 1985). The outer sidewall and water bath 
were made in three sections, between which were placed transparent acrylic inserts 
of thickness 5 mm (see figure 2) to enable the working fluid to be illuminated by a 
flat, horizontal beam of light at either of two levels in the vertical. The light scattered 
from the suspended beads was viewed through the transparent Perspex lid by a 
monochrome television camera mounted axially on the turntable. The horizontal 
trajectories of the beads (which were assumed to follow the motion of the fluid itself) 
could then be followed electronically using the automatic particle-tracking technique 
described by Jackson (1984) and Hignett et al. (1985). 

The latter method makes use of the spatial and temporal coordinate systems of 
the television camera itself (suitably calibrated with respect to the frame of the 
apparatus) to  measure the displacements of particles in successive raster scans of the 
image by the camera during preset time intervals. The data are then stored in a 
PDP 11/34 minicomputer. The time interval was chosen to give maximum particle 
tracks of 2-4 cm, and by this means, a series of scans of the two levels could be quickly 
obtained, each of which typically contained 150400 randomly distributed velocity 
measurements. Subsequent processing analysed the radial and azimuthal velocity 
fields at each level using an interpolation scheme similar to that of Jonas & Kent 
(1979)) to obtain a continuous analytical representation as an azimuthal Fourier 
series, the coefficients of which are expressed as a polynomial in the radial coordinate. 

3.2. Measurements and dimensionless parameters 
The facilities offered by the laboratory apparatus described in $3.1 enable measure- 
ments of the temperature difference and horizontal velocity fields to be obtained over 
a wide range of heating and rotation rates. For comparison with the scale analysis 
in $2, therefore, we define two measured parameters intended to represent the 
temperature scale set up by the internal heating, 

ATm = max(T,,T,,)-min(q) ( i =  1,6),  (3.2) 
(where T, is the temperature a t  thermocouple i, see figure 3) and a measure of the 
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azimuthal velocity scale 

(3.3) 

at a given heating and rotation rate. The velocities ijl and iT2 represent the azimuthally 
averaged components of v at the two illuminated levels in the fluid, end their radial 
dependence can readily be determined from the polynomial coefficients of the 
wavenumber m = 0 component of the azimuthal Fourier series analysed for v from 
the velocity measurements. To reduce random experimental errors in V,, and to 
obtain estimates of their magnitude, five pairs of scans were used for each measurement 
(typically comprising a total of 2000-4000 individual particle trajectories), and the 
results combined to obtain a mean value and its standard deviation. By this means, 
measurements of Vm with formal uncertainties of 2-10% (typically 5%) were 
obtained over a range in velocity scale 0.01 < V, c 1 cm 5-1. 

Dimensionless measures of ATm and Vm may also be defined as representing 
estimates of the corresponding parameters used in the scale analysis in $2. Thus, we 
obtain an internal Rayleigh number 

gE AT, Ls A m =  -- 
KV (3.4) 

(where h, A, and V are the values appropriate to the mean temperature of the working 
fluid and L = (b-a)), an Ekman number based on I and H = d, and an internal 
boundary-layer parameter 

(cf. (2.22)), where e = d / ( b - a )  as above. The parameter equivalent to p needs to be 
defined carefully, taking the various geometrical factors into account (since the 
Cartesian analysis in $2 did not explicitly allow for spatial variations in a) ,  so that 
p = 1 if heat transfer occurs by thermal conduction only. In this case, it is 
straightforward to show that, for isothermal, cylindrical sidewalls and perfectly 
insulating endwalls, AT reaches a maximum value at r = (ab)f of A%, where 

P, = A$ E-1s-t (3.5) 

where PO 
271 In (b /a)  dp, c p  ’ A =  (3.7) 

(cf. (2.29), and Hide & Mason 1970; Quon 1977). A parameter with the required 
properties analogous to p is therefore 

(3.8) 

which effectively differs from the ‘Nusselt number’ of Hide & Mason (1970) by a 
geometrical factor only. 

The errors associated with the measurement of heat transfer, especially in a system 
primarily designed for visual observations, are well known (e.g. see Hide & Mason 
1970, 1975; Hignett 1982). Although the present method of measurement is more 
direct than that commonly used for boundary-heated systems, systematic errors are 
bound to occur owing to stray exchanges of heat between the working fluid and the 
apparatus environment. The use of fixed probes to measure the maximum temperature 
contrast may also result in errors related to rotation and heating rates if the form 
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of the temperature field changes so that the position of maximum temperature is not 
constant. For strongly advective flows, however, the rapid motion in the endwall 
boundary layers results in very little horizontal temperature contrast in the vicinity 
of the Ekman layers themselves, the flow adopting the character of an internal jet 
(e.g. see Read 1985). Because the probes used in the present experiments only 
penetrated 1.2 cm into the interior from the horizontal boundaries, temperature 
differences between probes at the same level are therefore expected to be quite small, 
and were typically no more than x 5% of the maximum thermal contrast AT,, 
suggesting that errors due to the latter effect ought to be negligible. Errors due to 
insufficient thermal insulation of the apparatus were minimized by carrying out most 
experiments a t  modest power inputs (so that A T  was not too large) with a mean 
temperature close to that of the surrounding laboratory. It is estimated, therefore, 
that p, can be measured to an absolute precision of about loyo, although the 
repeatability of each measurement is typically within 3 yo, indicating the accuracy 
to which relative variations of p, can be measured. 

I n  plotting the data, it is also useful to scale the dependent variables so that the 
values do not depend strongly on apparatus geometry or other physical properties of 
the system. Following the guidance from the scale analysis, therefore, we scale V, 
by K(EA,)$ L-l. In  practice, i t  is found that ,urn is only x 3 4 ,  so that  it is not strictly 
9 1.  It is more appropriate, therefore, in comparing the results with the scale 
analysis, to form a measure of the PBclet number by subtracting the conductive 
component ofp,, and to  scale (p, - 1 )  by the factors suggested from the scale analysis 
(cf. Hignett 1982 for measurements of Nusselt number in the boundary-heated 
annulus). Accordingly, (,urn- 1)  is scaled by (A,/€$. 

3.3. Results 
The results from a series of velocity and temperature measurements, carried out in 
an annulus for which E = 2.63, are shown in figure 4. The range in rotation rate 
covered is from x 0.01 t o  nearly 1 rad s-l a t  a nearly constant heating rate 
p ,  x 100 W (corresponding t o  A, x 5.8 x lo'). The range in P, covered by the 
experiments is limited at low rotation by practical difficulties in maintaining an even 
rotation rate and in measuring extremely slow velocities (V, < lop2 cm s-l). At the 
upper limit of P, shown in figure 4, the range is limited by the onset of large-amplitude 
baroclinic waves, which occur for P, 2 1 in the present system. The resultant flow 
is therefore highly non-axisymmetric beyond these limits, and the scale analysis 
described in $ 2  is no longer valid. As noted in $2.3, P x cr-kLf/(gH) = e(crB)-$, 
where B is the so-called Burger number (e.g. Gill 1982). Provided sa-4 = O ( l ) ,  
therefore, P x 1 can be clearly associated with the principal stability criterion for 
baroclinic instability (e.g. see Hide & Mason 1975; Pedlosky 1979; Gill 1982). The 
parameter s2cr-2 = 4.5 x for this series of experiments (indicated by B in figure 
4), suggesting that axisymmetric regimes (ii)-(iv) may be just accessible. 

Consistent with this interpretation, (pm- 1 )  is found to  be almost independent of 
P, (cf. table l ) ,  apart from a weak (though statistically significant) decrease by about 
10 yo between the lowest and highest values of P,. The decrease in (p,- 1)  is not 
sufficient to  reach the P$ dependence suggested in $2 for regime (iv). At the 
lowest values of P,, V, is found to  rise steeply with rotation rate, closely following 
the unity-exponent power-law dependence predicted for regime (ii). At the larger 
values of P,, however, the gradient flattens off towards the @, dependence 
associated with regime (iii) (cf. table l) ,  apparently reaching a maximum a t  the onset 
of baroclinic waves around P, x 1.  
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FIGURE 4. The variation of (,urn - 1) and V,, derived from measurements of horizontal velocity and 
temperature in the laboratory experiments described in $3, over a range of P, obtained at a near1 
constant value of A, ( = 6 x lo'). Quantities plotted are (,urn- 1)  (e/A,)f (0) and Vrn L/[K(EA,) ] 
(0) with respect to P,. The limit delineating regimes (ii) and (iii) (see table 1) is shown aa B, and 
the value of (pm- 1)  measured at SZ = 0 is indicated as C. 

3 

The measurements in figure 4 are evidently consistent with the scale analysis over 
the range of P, accessible in the laboratory (within which axisymmetric flows 
actually occur), which appears to be limited to regimes (ii) and (iii) and the transition 
region towards regime (iv). Regime (i) can, of course, be approached in the laboratory 
(though not strictly achieved because of the Earth's rotation) by not rotating the 
apparatus, at least for temperature measurements. The corresponding value of ,urn 
(indicated as C in figure 4) agrees with that obtained at the lowest values of P, in 
figure 4 to within the experimental errors. 

Having established that the axisymmetric flows obtainable in the laboratory all 
appear to lie in the weak-rotation regimes, a further experiment which can be carried 
out to verify the scale analysis is to measure the dependence of AT, and p, on the 
heating rate at  low values of P. Figure 5(a) shows the results of a series of measure- 
ments carried out at very slow rotation rates, over a range in heating rate 
7 5 p ,  5 350 W, plotting (p,- 1)  as a function of A,. The points all lie close to a 
straight line, corresponding to a power-law dependence of (p,-l) on A, with an 
exponent of 0.214+0.014 (fitted by linear regression), in excellent agreement with the 
anticipated exponent predicted from the scale analysis (cf. (2.25)). As discussed in $2, 
this scaling for ,urn corresponds to a temperature scale given by (2.21) (assuming 
,u %- 1 ) .  Also plotted in figure 5 ( b ) ,  therefore, is the same data as in figure 5(a ) ,  
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FIQURE 5. (a) The variation of &,- 1) with A, at  low rotation rates (regimes (ii) and (iii)), obtained 
from measurements in the laboratory. The straight line indicates the +-exponent inferred from the 
scale analysis. (a) The variation of ATm with power inputp, (scaled according to (2.21)). The straight 
line indicates the +-exponent inferred from (2.21), assuming p % 1. 

showing the variation of AT, with p, (scaled by ( t i / i j ) iE i ,  as suggested from (2.21)). 
The results again lie close to a straight line, equivalent to an exponent of 0.85+_0.01, 
in less satisfactory agreement with the exponent suggested from (2.21). The 
discrepancy in agreement between the rigorously scaled plot of (,urn- l ) /Ac  in 
figure 5 (a) and AT,/p, in figure 5 (b) may be seen as reflecting the fact that ,urn does not 
greatly exceed unity, and that the conductive component of heat transfer must 
therefore be taken into account. 



Flow in an internally heated rotating jluid 273 

3.4. Discussion 
Within the range of P, accessible for axisymmetric flows in the laboratory, therefore, 
measurements of parameters derived from the temperature and azimuthal velocity 
scales are found to be in good agreement with the scale analysis in $2.1 for their 
dependence on heating and rotation rates. The range over which the theoretical 
analysis has been tested is, however, quite limited, with at most three of the six 
regimes being amenable to full quantitative investigation. The onset oflarge-amplitude 
baroclinic waves prevents the axisymmetric regimes (iv)-(vi) being obtained in the 
laboratory, since their effects upon the flow (particularly with regard to heat transfer) 
cannot be neglected in comparison with the properties of the axisymmetric component 
of the flow. One way to overcome this limitation, at least in principle, would be to 
carry out another series of experiments in the ‘lower-symmetric’ region of the regime 
diagram (e.g. Hide t Mason 1970, 1975). This regime is only attained in the 
laboratory for extremely small temperature differences and heating rates, however, 
rendering accurate measurement of the temperature and velocity scales extremely 
difficult. 

Hignett ( 1982) encountered similar difficulties while investigating the heat-transfer 
properties of axisymmetric flows in the boundary-heated annulus, but was able partly 
to overcome them by using sloping endwalls to suppress the development of the 
baroclinic waves, well into his equivalent of regimes (iv) and (v) (cf. Mason 1975). 
It remains to be seen whether this approach is feasible for the internally heated 
system, although it is likely that the configuration of sloping boundaries will need 
to be more complicated than for the boundary-heated system, owing to the 
non-monotonic form of the temperature field (see Hide t Mason 1970, 1975; Mason 
1975; Quon 1977 and $4.3 below). 

4. Numerical experiments 
A further means of obtaining information on axisymmetric flows in a rotating 

annulus over a wide range of parameters, also discussed by Hignett (1982), is to obtain 
numerical simulations of the flow using a sufficiently realistic and well-formulated 
numerical model. Provided such a model is formulated with due regard to its formal 
accuracy and finite-difference schemes, and has sufficiently realistic geometry, fluid 
properties and boundary conditions, the simulations may be regarded in certain 
respects as an extension of the laboratory experiments. Furthermore, if the model 
is designed to exclude non-axisymmetric effects (by omitting terms in the equations 
of motion, continuity and thermodynamics which depend on azimuth angle O ) ,  the 
development of instabilities and waves, such as the large-amplitude baroclinic waves 
found in $3, may be effectively suppressed in the resulting simulations. The 
possibility is therefore raised of using such a numerical model to explore the properties 
of a dynamically consistent axisymmetric flow in an otherwise realistic configuration 
at values of P > 1, thereby giving access to regimes (iv)-(vi) in addition to the other 
three regimes accessible in the laboratory. 

4.1. The numericul model 
The numerical model employed in the present study is a two-dimensional, axisym- 
metric version of the finite-difference Navier-Stokes model used by James, Jones t 
Farnell(1981), Hignett et al. (1985) and Read (l985,1986a, b). This model integrates 
the time evolution of the non-hydrostatic equations of motion, continuity and 
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thermodynamics for an incompressible, Boussinesq liquid in cylindrical annular 
geometry. A reduced centrifugal term Qzria(T-T,) (where i is a unit vector in the 
outward radial direction) is includedin the momentum equation, thereby incorporating 
possible departures of the apparent vertical from the axis of symmetry and rotation. 
An equation of state 

is also assumed, where T, and pr are a reference temperature and density respectively. 
The pressure P is represented as the deviation from the reference function 

P = pr[l-a(T-T,)l (4.1) 

p , ( r , z )  = prg(d-z)++,52Zr (4.2) 

and the internal heat source q in the thermodynamic equation is as given in (3.1) (i.e. 
as used by Quon 1977). 

The model employs a finite-difference scheme similar to that of Williams (1969, 
1972) with a typical resolution of 16 x 16 or 16 x 32 points respectively in r and z. 
A stretched mesh is used, however, to enhance the resolution of the model in the 
boundary layers (cf. Quon 1977) by applying a hyperbolic tangent rule for the grid 
spacing, with a lengthscale related to a notional boundary-layer thickness 6 (i.e. the 
Ekman-layer depth (v/Q)! on horizontal boundaries, and the smaller of Stewartson 
(E iH)  and thermal (WfL) boundary-layer thicknesses at the sides - see Hignett et al. 
1985 for further details). The finite-difference schemes are formally accurate to second 
order on the non-uniform grid. The advection terms in the momentum equation are 
represented by a modified form of the scheme of Piacsek & Williams (1970) to ensure 
consistency of the kinetic-energy budget, while in the thermodynamic equation, the 
advection term is represented in flux form (Arakawa 1966) so as to conserve total 
temperature. Time integration uses the leap-frog scheme, with Du Fort-Frankel 
representation of the diffusion terms (see James et al. 1981 ; Hignett et al. 1985). The 
timestep required was found to depend upon the rotation rate, with 0.1 s being an 
adequate compromise between computational economy and numerical stability for 
the lowest-rotation-rate experiments, but rather shorter timesteps (as short as 0.01 s 
in some cases) were required for 52 > 2 rad s-l. The pressure field is determined 
diagnostically at each timestep from the solution of a Poisson equation (see James 
et al. 1981; Hignett et al. 1985) using the method of Farnell (1980), applying the 
condition that the normal pressure gradient vanish at the boundaries. 

The boundary conditions applied were intended to represent the conditions 
pertaining to laboratory experiments, such as those in 93, with a rigid lid in contact 
with the top surface of the fluid. The conditions applied were therefore similar to those 
used by Williams (1967b), thus 

u = v = w = (T-T,) = 0 at r = a, b,  ( 4 . 3 ~ )  

u = v = w = T, = 0 at z = 0, d. (4.3 b) 

In a typical experiment, the flow was initialized by an isothermal (T = T,) state at 
rest in a frame rotating at  the required value of 0. The heating was then applied and 
the model run with the boundary conditions (4.3a, b) until a steady state was reached, 
usually requiring 2000-5000 s of simulated time to reach equilibrium. 

4.2. Dimensionless parameters 
To test the predictions of the scale analysis for the global properties of the flow in 
a similar manner to the laboratory experiments of 93, we need to define suitable 
measures of the temperature and zonal velocity scale from the model fields. For the 
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temperature scale, it  is straightforward to  obtain the maximum value of AT set up 
by the internal heating, 

I n  the final steady-state temperature field. For the azimuthal velocity scale, i t  was 
convenient to make use of the volume-averaged zonal kinetic energy, calculated 
routinely at intervals during each experiment. The azimuthal velocity scale for the 
numerical simulations is therefore defined as 

AT, = max (T-T,), (4.4) 

Dimensionless measures of AT, and V, can again be defined for comparison with those 
given in $3.2 (although they will inevitably differ quantitatively by small amounts 
due to  differences of definition). Thus, A,, Pn and ,un are given by (3.4)-(3.8) using 
AT, as defined in (4.4), while V, is scaled by ~ L - l ( e A , , ) i .  

4.3. Results for global parameters 

The first series of experiments consists of a number of numerical simulations in an 
annulus of similar dimensions to the laboratory system discussed in $3 (with E = 2.67), 
in which the heating rate was maintained a t  a constant value p ,  = 100 W and the 
flow simulated over a wide range of rotation rate. Figure 6 shows the variation of 
the suitably scaled values of (p, - 1 )  and V, over a range in Q from lop4 to 12 rad s-l, 
illustrating their behaviour with respect to the internal parameters. The limiting 
values of ff, for the regimes discussed in $2 (see table 1 )  are indicated in figure 6, 
and suggest that  regimes (ii)-(v) are sampled in the present series of experiments. 

As found for the laboratory experiments in $3, (p,- 1 )  is virtually independent of 
P, at the lowest values of Q, and only begins to  decrease as P, approaches unity. 
The values of (p,- 1)  derived from the model, however, appear to decrease with P, 
somewhat more rapidly as Pn+ 1 than the corresponding laboratory results (cf. 
figures 3 and 5). The velocity scale V, over this region varies as P," a t  the lowest 
values of SZ, and more weakly with P, as P, + 1. It is of interest to  note that V, does 
not exhibit the slight kink around P, !z 0.4, as noted for the laboratory measurements. 
These observations may be indicative of some shortcomings in the numerical model 
as simulations of the laboratory flows, perhaps associated with the development of 
weak, non-axisymmetric baroclinic instabilities near the upper-symmetric transition 
(cf. Hide & Mason 1978; Jonas 1980), although such waves were not detected 
explicitly in the present experiments. 

As suggested from the scale analysis, V, reaches its maximum value around P, x 1 ,  
while (p,- 1 )  decays gradually with P, (cf. the line representing the power law P$ 
in figure 6) consistent with the properties derived for regime (iv). At increasing values 
of P,, V, turns over and begins to approach the Pi' dependence at the highest values 
of 51 investigated. (,u,-l) also continues to  decrease more sharply with P,, 
approaching (and possibly exceeding) the ff;! dependence anticipated from the scale 
analysis for regime (v). 

The behaviour of the model results are therefore, like the laboratory experiments, 
in reasonable agreement with expectations from the scale analysis, although the 
results suggest a rather ambiguous distinction between regimes (v) and (vi) at the 
aspect ratio of this configuration. This may be due to  the relatively small difference 
between the limits 1 and Ak €4 (a factor of < lo2), so that the required limits for regime 
(v) are difficult to achieve satisfactorily. Conversely, i t  is possible that model 
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FIQTJRE 6. The variation of &-l)  and V,, derived from numerical simulations of flow in an 
internally heated rotating annulus at three different aspect ratios for the same value of 
A, (= 9.08 x lo'). Quantities plotted are 01,- 1) (€/A,)+ and VnInL/[~(eA,)i] with respect to P,, and 
the different aspect-ratio results are denoted by E = 2.67 [ and 01, e = 1 [ 0 and a] and E = 0.325 
[+ and XI. Also shown are 01,- 1 )  for cases 3 and 4 of Quon (1977) (denoted by 0). At higher 
values of P ,  for e = 2.67, results are shown which were obtained with single-precision computations 
(denoted by A joined by dashed lines for @,,-l), and by D for V,) for comparison with the 
double-precision results (see text). The limit P, = e 2 c 2  delineating regimes (ii) and (iii) fore = 2.67 
is indicated as B. 

shortcomings have introduced systematic inaccuracies into the simulations. Results 
from early simulations, carried out in the region P, w 10 with single-precision (32-bit) 
computations, are shown in figure 6 as dashed lines for @,- 1) and V,, and indicate 
significant differences from the results obtained with double-precision (64-bit) 
arithmetic (joined by a continuous line in the same regions of figure 6). The difference 
between single- and double-precision simulations increases with P, (with the results 
being virtually identical for P, 5 2), suggesting a need to investigate further the 
effects of model precision in this region of parameter space. The effect of model 
resolution should also be investigated further, since the grid stretch is somewhat 
extreme for the largest values of P, considered here. The latter factors may account 
for the sharper decrease of @,- 1) with P, in figure 6 than the P 3  suggested from 
the scale analysis for regime (v). 

4.4. Effects of different aspect ratios 

In comparing results from several different experiments, the role of the aspect ratio 
E needs to be considered. The scale analysis in $2 suggested that the essential 
dynamics are not significantly affected by 8 ,  provided that it is not too different from 
unity, and indicates an appropriate scaling of the various dimensionless parameters 



Flow in an internally heated rotating Jluid 277 

to take account of different values of E (see table 1). To invesigate the effects of 
different values of E ,  the numerical experiments described above for B = 2.67 were 
supplemented by two further series of simulations at  E = 1 and 0.325 (but at the same 
value of Ac), thereby spanning the full range over which most laboratory experiments 
are commonly carried out. 

Figure 6 shows the results from all three series of experiments, plotted onto the 
same diagram. All three aspect-ratio series exhibit qualitatively the same behaviour, 
with (p,- 1) independent of P, until P, 2 1 and decaying with P, thereafter, and 
with V, also rising to a maximum just below P, x 1. The scaling for p,, V,, and P,, 
designed around the expected behaviour of the flow at low rotation, maps all the 
results into fairly narrow regions of parameter space. Agreement between the various 
experiments is particularly close for pn and V, at P, < lo-’. Systematic departures 
from 8 ‘universal ’ behaviour, as represented by the present scaling, become evident 
at  higher values of P,. This is especially marked in the variation of V,, and may be 
partly attributable to the dependence of the limits distinguishing the various 
axisymmetric regimes upon B itself, particularly for the two weakly rotating regimes 
(ii) and (iii), which occur for P, 5 B % - ~ .  The scale analysis also suggests a different 
overall dependence of p, and V, on E for the higher-rotation regimes (see table l),  
so that we should not expect there to exist a single scaling which is universally valid 
for all values of P. Over the range of ff, accessible in the laboratory (P, 6 l),  
however, good agreement is found, and the scaling suggested by $2 is largely 
confirmed. This conclusion is in broad agreement with the work of Hignett (1982), 
who successfully combined heat-flow measurements in the boundary-heated annulus 
from a variety of laboratory and numerical sources with differing aspect ratios using 
essentially the same scaling for Nusselt number and P as given here. 

For completeness, we also show some results for p, from the simulations of Quon 
(1977) in figure 6 (using the values of AT listed in his table 2). The range in P, of 
Quon’s experiments lies between 0.6 < P, < 32, so that the regimes sampled are more 
limited than in the present study (corresponding roughly to regimes (iv)-(vi)). The 
upper boundary condition also differs from the present work in being stress-free 
(u, = w, = 0) rather than non-slip (see (4.6b)). The results for his cases 3 and 4 are 
shown in figure 6, and both lie within the region of parameter space occupied by the 
present work, although (,u,-l) for the more weakly heated experiment (case 3) is 
systematically lower than for the other B = 1 results at  comparable values of P,. As 
in the boundary-heated annulus, the upper stress-free surface does not appear to 
affect strongly the radial heat transport (e.g. see Hignett 1982), which remains 
dominated by the properties of the Ekman layer adjacent to the lower, non-slip 
boundary. The other two cases discussed by Quon (1977) cannot be plotted in the 
present scheme since, according to Quon’s table 2, the values of AT obtained from 
his numerical simulations actually exceed AT, (so that (p,-l) < 0, cf. (3.8)). The 
latter result may indicate some shortcomings in the model used by Quon (1977), 
possibly related to the difficulties encountered with computational precision discussed 
above for the present model, especially since the temperature differences in his more 
weakly heated experiments are extremely small (AT x 5 x K). The numerical 
scheme for the thermodynamic equation in Quon’s model was also formulated to 
conserve T2 (see Quon 1976), in contrast to our model (see $4.1 above). The possibility 
that this difference in formulation could lead to errors of this type should also be 
investigated further. 
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4.5. Fields of motion and temperature 

The form of the temperature and velocity fields in the various regimes is also of 
interest both from the viewpoint of the scale analysis in $2 and more generally. Figure 
7 shows a series of examples of T-, v- and $-fields a t  values of P, roughly 
representative of regimes (ii)-(v) for the experiments a t  E = 1. 

The most striking variations are found in the form of the temperature field in figures 
7 ( a ) ,  ( d ) ,  (9) and (j). As suggested by the scale analysis, the slope /3 of the isotherms 
in the interior ranges from nearly zero (i.e. horizontal) in regime (ii) to /3 x 1 (nearly 
vertical) in regime (v), with /3 z 0.7 in figure 7 ( 9 )  corresponding approximately to  
regime (iv). The sidewall-boundary-layer structure is also highly regime-dependent. 
The T-field in figure 7 (a )  (regime (ii)) is readily divided between a nearly isothermal 
interior and intense thermal boundary layers adjacent to each sidewall, the structure 
of which is nearly independent of height. There is some evidence of convective 
overshoot in the isotherm structure just outside the thermal boundary layer itself, 
characteristic of a buoyancy/viscous balance in a ' momentum ' boundary layer whose 
thickness is significantly greater than ( A / E ) - ~  (cf. the similarity solution and 
associated discussion of McIntyre 1968 for the boundary-heated annulus, Mobbs 
1986, and $4.6 below). The T-field in figure 7 ( d )  (regime (iii)) still shows little 
variation in the boundary-layer structure with height, although the interior isotherms 
now show a perceptible slope, and the convective overshoot pattern is less obvious 
(although the contouring method employed may not show this structure very 
effectively). By regime (iv) (figure g), considerable vertical structure in the thermal 
boundary layers is evident, with the largest gradients concentrated near the upper 
corners of the annulus. The convective-overshoot pattern is no longer discernible, and 
the isotherms in the interior smoothly match into the boundary layers, with the 
reversal of the horizontal temperature gradient now clearly apparent around 
r = (ab):. The number of isotherm contours has also increased, indicative of the 
increasing value of AT, as the Ekman layer begins to influence the efficiency of 
advective heat transfer in the flow. As anticipated from $2, by regime (v) (figure 7j) ,  
the thermal boundary layers are showing evidence of expansion into the interior, 
while the density of isotherms continues to  increase rapidly as we enter the fully 
Ekman-dominated regime. As the isotherms in the interior become more vertical, i t  
is clear that the flow is approaching the purely conductive solution as P, increases 
towards regime (vi). 

The azimuthal velocity fields show much less qualitative change in structure 
between the various regimes. Figure 7 ( e ) ,  ( h )  and ( k )  all exhibit a four-jet pattern, 
with anticyclonic horizontal shear in the interior at upper levels and cyclonic shear 
a t  lower levels. This presumably reflects the predominance of a geostrophic interior 
balance in the vorticity equation, deduced in $2 for regimes (iii)-(vi). Only figure 7 ( b )  
differs from this patstern, suggesting that the dynamics of this regime for v indeed 
differ from the other three illustrated in figure 7. 

The meridional stream function, too, shows little qualitative variation with regime. 
The decrease in Ekman-layer thickness with increasing values of P, is readily 
apparent in the  fields illustrated in figure 7,  with the horizontal motion occupying 
a large fraction of the annulus in regime (ii) (figure 7c)  and only a tiny fraction of 
the depth in regime (v) (figure 7 h ) .  The increasing role of Proudman-Taylor 
constraints on w, in the interior with increasing values of P, (and S Z )  is also evident, 
with the isolines of ~ becoming steadily more vertical in moving through regimes 
(ii)-(v). Despite the increasing thickness of the thermal boundary layers with P,, the 
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FIGURE 7. Contour maps of the temperature [ (a) ,  ( d ) ,  (9)  and ($1, azimuthal velocity [(b), (e),  (h) 
and (k)] and meridional stream function ( [ (c ) ,  cf),  (i) and (Z)]  fields, from numerical simulations of 
flow in an internally heated rotating annulus ( E  = 1) a t  values of P, typical of axisymmetric regimes 
(ii)-(v). Fields correspond to regime (ii) [P, = 5.8 x loT3; (a)-(c)], regime (iii) [P, = 0.281 ; ( d ) - ( f ) ] ,  
regime (iv) [P, = 1.26; (9)-(i)] and regime (v) [P, = 7.62; ( j ) - (Z ) ] .  Contour intervals are 0.5 "C [(a), 
( d ) ,  (g)], 1.0 "C: [(j)], 0.002 cm s-l [ ( b ) ] ,  0.05 cm s-l [(c)  and (h)], 0.1 cm s-l [(k)], 0.1 om2 s-l [ ( c )  and 
c f ) ] ,  0.05 cm s-' [(i)] and 0.01 cm2 s-l [(Z)]. All negative contours are dashed. 
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$-field indicates that the sidewall boundary layers asociated with u and w become 
steadily thinner as SZ increases. The latter result is consistent with the expected El  
and Ei dependence of the boundary layers of Stewartson-type (e.g. Fein 1978) 
applicable to the cylindrical annulus (cf. also figures 8-10 below). 

4.6. Dynamicul balances 
Because the numerical model calculates an internally consistent set of temperature 
and motion fields for the flow to a degree of accuracy limited only by the numerical 
precision of the computer, it is straightforward to examine the spatial distribution 
of all the terms in the model equations (cf. Williams 1967a, b,  1972). As shown above, 
the model equations include analogues of the terms used in the scale analysis in 52, 
and we may therefore test the validity of the analysis directly by examining the 
detailed dynamical balances at every grid point in the flow. 

Figure 8 shows a sequence of profiles of the terms in the thermodynamic equation 
as functions of r and z at mid-height and mid-radius respectively, for the axisymmetric 
flows illustrated in figure 7. All four radial profiles show a clear distinction between 
the sidewall boundary layers and the interior, with a vertical advection/diffusion 
balance predominating in the boundary layers in all cases (except, perhaps, in figure 
8g). For regimes (ii), (iii) and (iv) (figure 8a,  c, e), the diffusion term becomes very 
small in the interior, where the balance is largely between internal heating (with its 

radial dependence) and vertical advection (see 52.1 and 2.2). For the regime (v) 
example (figure 8g), however, the diffusion term has become comparable with 
vertical advection in the interior, because of the inhibiting effect of the Ekman layers 
on the meridional circulation. Horizontal advection hardly occurs in the sidewall 
boundary layers or the interior but is a dominant term in the Ekman layers. The 
vertical profiles in figure 8 illustrate the shrinking of the Ekman layers as P, increases 
(whose thickness is indicated as E in figure 8 b,  d ,  f ) ,  and also show the important role 
of thermal diffusion in the Ekman layers, required to balance horizontal advection 
in regimes (iii)-(v) as the vertical advection term is forced towards zero by the 
impermeable boundary condition at  z = 0 and d (see (4.3b)). 

Similar profiles for the azimuthal momentum equation are shown in figure 9 for 
thesameflowsasabove, butatz = 0.2dandr = a+0.7(b-a)(sincev = Oatmid-height 
and mid-radius, and the corresponding profiles for this equation are not typical of 
the rest of the interior flow). For regimes (iii)-(v) (figure 9c-h), the dominant balance 
is largely between viscosity and the Coriolis termfu, with the advection term playing 
a subsidiary role except in the sidewall boundary layers (cf. 52.3). The balance in 
regime (ii) (figure 9a, b) ,  however, appears to be more complicated in the interior, 
with the viscous term being relatively small. The implied approximate balance 
between the advective, Coriolis and metric (uw/r) terms is consistent with the near 
conservation of angular momentum m (=  r [Qr+v] ,  cf. Williams 1967a; Read 1986c) 
suggested from the analysis of $2.3. The vertical section (figure 9 b ) ,  however, shows 
the viscous term becoming large near the horizontal boundaries, largely balanced by 
the Coriolis term. This is apparently in conflict with the scale analysis of 52.3, though 
the Ekman number for this flow ( E  = 4.17 x is a little larger than assumed in 
the scale analysis (the depth scale of the Ekman layer h, = 1.73 cm, cf. the annulus 
depth d = 6 cm). The distinction between ‘thin’ Ekman layers and an interior flow 
is therefore only marginally valid. The profile does, however, indicate the presence 
of a secondary boundary-layer structure, in which the balance changes to one 
dominated by the viscous term, with a characteristic lengthscale h, < h,. 

An estimate of h, can be obtained by extending the scale analysis in $2, rescaling 
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FIGURE Profiles of the main terms in the thermodynamic equation (cf. (2.6)), obta.-ie- --3m the 
numerical simulations illustrated in figure 7 at values of P,, of 5.8 x [(a), ( b ) ] ,  0.281 [(c), ( d ) ] ,  
1.26 [ (e ) ,  cf) ]  and 7.62 [ ( g ) ,  (h)]. Profiles are with respect to radius at mid-height [(a), ( c ) ,  (e) and 
( g ) ] ,  and with respect to height at mid-radius [(b), (d ) ,  (f) and (h)]. Terms plotted correspond to 
q ( ~ )  (-); wT, (----); uT, (.-----); and K V T  ( - .  9 .  * * ) .  The thickness of the Ekman layer (v/Sa)j 
is indicated as E in (b), ( d )  and cf), and that of the weak-rotation bounda layer (see text) as H 

indicated by T and S respectively in (a), ( c ) ,  (e) and (9) .  
in (b). The thicknesses of the sidewall thermal boundary layer and the E 7 Stewartson layer are 
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FIQURE 9. Profiles of the main terms in the azimuthal momentum equation (cf. (2.2)),  obtained 
from the numerical simulations illustrated in figures 7 and 8. Profiles are with respect to radius 
at z = 0.2d [ (a ) ,  (c), (e) and (g)], and with respect to height at r = a+0.7(b-a) [ ( b ) ,  ( d ) ,  (f) and ( h ) ] .  
Termsplottedcorrespondto -fu(----); -u.Vv(-); v ( V z v - v / r 2 ) ( . . . .  . . ) ;and  -uv/r(--.--.-). 
Boundary-layer lengthscales E ,  H ,  T and S are shown as for figure 8. 
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(2.2) using Az = h,&, (assuming h, Q H ) ,  Ax = LAX,, Y as given by (2.18) and 
V = fL (see $2.3); thus 

For the viscous term to balance the Coriolis and advective terms in this boundary 
layer, we require 

which is, of course, independent of rotation rate. For the flow illustrated in figure 
9 (a, b), h, = 0.84 cm (shown in figure 9 b  as H), and is seen to be areasonably accurate 
measure of the size of the region of the flow dominated by the viscous term. It is 
significant that the limit P = ~ ~ e - ~  represents the case where h, = HE4 (=  hE),  so 
that h, is the thinnest horizontal boundary layer for the whole of region (ii). The 
arguments of $2.3 continue to apply in the derivation of the other main flow 
parameters, however, and the h, boundary layer evidently acts as a passive layer, 
required to match w (and $) to the non-slip horizontal boundaries in the same way 
as the viscous sidewall boundary layers (where the balance of terms is similar). 

Profiles for the azimuthal vorticity equation may be derived by taking the curl 
of the vertical and radial components of the momentum equation, and are shown in 
figure 10 for the same four examples as above. The profiles for regime (ii) (figure 10a, b) 
clearly confirm the buoyancy/viscous balance, anticipated from $2.3 and from the 
appearance of convective-overshoot patterns in $4.4, at most points in the flow, with 
some contribution from the advection term (present because c is finite). In  regimes 
(iii) and (iv) (figure lOc-f) the balance has completely changed over to being highly 
geostrophic (buoyancy/Coriolis) except in the boundary layers (although the Coriolis 
term remains a significant component of the vorticity balance in the sidewall 
boundary layers, especially near the outer sidewall). The horizontal boundary layers 
exhibit the Coriolis/viscous balance characteristic of a linear Ekman layer (see $2.3). 
For regime (v) (figure log, h), the balances remain dominated by the geostrophic 
terms but, to reach this regime with the geometry and heating rate used for other 
simulations in this series (preserving a constant value of Ac),  a very rapid rotation 
rate ( x 12 rad s-l) was required. This renders the initial assumption that 52% Q g for 
the scale analysis in $2 no longer strictly valid, so that the reduced centrifugal term 
Q2raT, becomes significant in the vorticity balance. The net result is that the interior 
flow becomes highly geostrophic with respect to the apparent vertical only, in the 
sense that the vorticity equation reduces to a thermal wind equation relating 
temperature gradients along a local geopotential surface to the shear of the azimuthal 
flow perpendicular to that surface. 

h, = O(Hce-fA-f), (4-7) 

5. Concluding remarks 
We have presented a scheme of analysis for the axisymmetric flow in a fluid system 

heated internally and cooled at the side boundaries, which allows the classification 
of the flow according to a regime defined in terms of the dominant dynamical 
balances. From a consideration of the properties of each regime, the analysis enables 
the appropriate regime and its associated interdependence of flow parameters to be 
determined from the externally applied conditions (i.e. fluid properties, apparatus 
geometry, boundary conditions and heating and rotation rates). In common with 
several other comparable systems (e.g. HIK, Hignett 1982), the most significant 
dimensionles parameter is found to be the ratio (B) of the characteristic lengthscales 

10 FLY 168 
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FIQURE 10. Profiles of the main terms in the azimuthal vorticity equation (cf. (2.4)), obtained from 
the numerical simulations illustrated in figures 7-9. Profiles are with respect to radius at mid-height 
[(a), (c), (e) and (g)], and with respect to height at mid-radius [(a), (d ) ,  (f) and ( h ) ] .  Terms plotted 
correspond tofv, (----); -guT, (-); v ( V Z [ - [ / r Z )  (. . . . . . ); - w V [ + u [ / r 2  (+ - + - + -) ;  and 
-Sd*ruT, (.-.-.). Boundary-layer lengthscales E,  H, T and S are shown as for figure 8. 
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associated with the non-rotating sidewall thermal boundary layer and the horizontal 
Ekman layer, a parameter which encapsulates a good deal of physical insight into 
the chief factors determining the nature of the flow. A complication in the present 
system is that P is an internal flow parameter, involving combinations of quantities 
such as AT, which are not under the direct control of an experimenter. By referring 
the system to the conduction-dominated state, however, using the parameter p 
analogous to the Nusselt number of boundary-heated systems, we have shown how 
the flow can be determined from combinations of the externally imposed parameters 
while still retaining the physical insight offered by the use of a parameter related 
to P. 

Six main axisymmetric flow regimes have been identified, depending largely upon 
the value of P (and its external equivalent PJ. Most of these regimes are characterized 
by rapid flow in the meridional plane in thin boundary layers adjacent to the 
horizontal and vertical boundaries, and weak vertical motion in a stably-stratified, 
advective interior driven by internal heating. While the Ekman layers remain much 
deeper than the thickness I, of the diffusive thermal boundary layers, the meridional 
heat transport in the system is largely unaffected by rotation. As h, begins to 
approach Z,, however, the rotational influence initially affects only the interior slope 
of the isotherms (while AT remains largely constant). When h, 5 I , ,  the Ekman 
layers dominate the meridional heat transport, gradually shutting off the advective 
component of heat transfer as h, decreases. Eventually, the meridional flow is forced 
by the Ekman layers to be sufficiently weak that advection can no longer compete 
with diffusion, and the flow approaches the purely conductive state. 

The analysis also indicates that the azimuthal flow in the interior is characterized 
by a geostrophic balance over a remarkably wide range of parameter space (requiring 
only that P exceed the small limit ~ ~ a - ~ ) .  A number of subtleties are encountered 
in determining the magnitude of F‘ and its dependence on rotation, however, because 
the interior horizontal temperature contrast itself depends strongly upon rotation at 
low and moderate rotation rates. Only in the fully Ekman-dominated regimes (v) and 
(vi) is V given by the commonly assumed ‘thermal-wind’ scale, based on the total 
thermal contrast AT. At the lowest rotation rates, the Ekman layer plays no 
significant role in the flow, and the azimuthal flow matches onto the non-slip 
boundaries via passive viscous/advective boundary layers. The interior flow is then 
characterized largely by local conservation of angular momentum with a Rossby 
number R z 1 (see table 1 and figure 1).  

The conclusions of the scale analysis have also been extensively and quantitatively 
verified using both laboratory experiments (to measure the dependence of global 
parameters on P)  and numerical simulations. The latter have been shown to be 
particularly valuable in enabling the detailed balances in the basic equations to be 
studied, as well as the interdependence of the motion and temperature fields and their 
associated dimensionless parameters. The results of both studies have provided 
confirmation of the broad conclusions obtained from the scale analysis over a wide 
range of Pn and 8,  at least within the limitations of the initial assumptions. The scheme 
of analysis in $2 may be seen, therefore, as providing a useful framework for the 
interpretation and intercomparison of results from different experimental configura- 
tions, in a similar way to the results of HIK and Hignett (1982), for the regimes 
accessible in actual experiments. 

The occurrence of large-amplitude baroclinic waves for P 2 1 in the laboratory 
provides striking confirmation of the assertion that such non-axisymmetric distur- 
bances arise in order to assist in the azimuthally averaged advective heat transfer in 

113-2 
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the meridional plane. Laboratory results from around the axisymmetric/wave 
transition suggest that, instead of decaying rapidly with 52 as P increases through 
unity, the wave-present value of ,u remains close to the axisymmetric value measured 
at slightly lower values of P. The role of baroclinic waves may therefore be regarded 
as replenishing the meridional transfer of heat towards that obtained in the absence 
of rotational constraints. By comparing the axisymmetric numerical simulations with 
measurements of the wave-present flows in the laboratory a t  similar points in 
parameter space, quantitative assessments of the effects of baroclinic waves can be 
obtained for comparison with theories of baroclinic-wave transports (e.g. Pfeffer & 
Barcilon 1978; Barcilon & Pfeffer 1979). 

In connection with the latter, an important task is to define a suitable zonally 
symmetric state to use in studies of linear and weakly nonlinear baroclinic instability. 
The scale analysis in the present scheme identifies regime (iv) as that associated with 
the onset of baroclinic waves, so that any basic state invoked as the starting point 
for instability studies should be characterized by similar dynamical balances to those 
derived in $2.3. So far as the interior flow is concerned, the balances applicable to 
regime (iv) are similar to those usually assumed for many quasi-geostrophic analyses 
(e.g. Hide & Mason 1975; Pedlosky 1979; Gill 1982). This is found to be the case, 
even though a Rossby number based on the ‘thermal-wind’ scale for V (using A T  
rather than ATh, and commonly referred to as the ‘thermal Rossby number’ 
W,(= W//3  in regimes (iii) and (iv)), e.g. Hide & Mason 1975) may be only a little 
less than unity in many practical cases. Numerical simulations demonstrate, however, 
that the dominant dynamical balances for vorticity and zonal momentum are 
indisputably geostrophic for these cases, so that the quasi-geostrophic conditions 
under which Eady-type instability analyses may apply (e.g. Hide 1969; Hide & Mason 
1975) are broadly satisfied for the interior. Appropriate boundary conditions are also 
of importance, though they have received little detailed attention in previous work. 
Studies based on the present approach can provide useful guidance concerning the 
type of boundary layers which are compatible with a given interior flow regime, e.g. 
for asymptotic analyses such as those of McIntyre (1968) for the boundary-heated 
annulus, HIK for the thermocline configuration, and Mobbs (1986) for the presmt 
system. 

The latter considerations are clearly of interest in deciding the efficacy of a 
laboratory flow as a dynamical analogue of a geophysical system or feature. For the 
suggested analogy between the internally heated annulus flows and the cloud bands 
of Jupiter and Saturn (e.g. Read & Hide 1983, 1984; Read 19863; also cf. Conrath 
& Pirraglia 1983), a quasi-geostrophic interior balance in the laboratory system is 
confirmed by the present work under conditions appropriate for baroclinic eddies. 
Such a regime is also believed to prevail in the Jovian atmosphere for lengthscales 
appropriate to the largest long-lived eddies (e.g. Stone 1976; Conrath et al. 1981 ; 
Mitchell et al. 1981 ; Read 19863). The importance of diabetic heating needs t o  be 
carefully considered in the atmospheric context, however, especially with regard to 
the maintenance of the zonal wind structure, since it is clearly a dominant factor in 
the thermodynamic balance in the laboratory (and hence, perhaps, of importance in 
any potential vorticity budget, see Read 1986a, b) .  

HIK also discussed the use of their analysis (similar to that in $2 above) as directly 
applied to the large-scale circulation of the ocean. Although a parameter analogous 
to P could be defined for the oceans, the axisymmetric regimes derived were only 
of limited relevance to the real ocean because of three-dimensional effects (e.g. a 
closed-basin geometry) in the latter system. The possibility of applying the principles 
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of the analysis to an atmospheric context deserves further consideration, since 
three-dimensional effects due to large-scale topography may have a less extreme effect 
upon the circulation. An atmospheric system might then be more readily described 
in terms of a zonally symmetric system (as is frequently attempted in modelling 
studies, e.g. see Lorenz 1967; Charney 1973; Held & Hou 1980; Read 1986d). A 
careful consideration of the most significant boundary layers in an atmospheric model 
is clearly necessary, however, especially as an atmosphere does not usually invoke 
boundary layers as a means of heating and/or cooling, in contrast to most laboratory 
systems. The ensuing analysis could make use of more limited previous attempts at 
a scale analysis of axisymmetric or zonally averaged atmospheric models (e.g. 
Gierasch, Goody & Stone 1970; Stone 1972; Gierasch 1975), and thereby incorporate 
a greater degree of physical insight into the mechanisms of atmospheric circulation 
to supplement that afforded by the so-called ‘similarity ’ approach (Golitsyn 1970). 

In  comparing the results of the scale analysis with the numerical simulations, 
examples have been presented in which discrepancies between the analytical and 
numerical results have indicated possible shortcomings in the operation of the model 
at the most rapid rotation rates with inadequate computational precision. Further 
uses of this combined analytical, laboratory and numerical approach may therefore 
include the important task of verifying and improving the formulation of numerical 
models for use in a wide variety of applications (cf. Hignett et al. 1985). 

Thanks are due to Dr R. Hide for his continued interest and support, and especially 
to Drs P. Hignett and S. D. Mobbs for many fruitful discussions during the course 
of this work. The technical assistance of Mr W. D. N. Jackson and Mr I. M. 
Armstrong in carrying out the laboratory experiments, and Mr R. D. Carter and Ms 
H. M. Schrecker in programming the numerical model and some of the associated 
diagnostics, are gratefully acknowledged. 
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